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ABSTRACT

A large pool of liquid with a horizontal free surface is bounded on one side

by a vertical solid wall. The wall is maintained at a cold temperature to a depth

of unity, with a warmer temperature below that point. The fluid surface is assumed

adiabatic, and average surface tension forces keep the surface flat. Surface tension

is assumed to be a decreasing function of temperature, so that the surface thermal

gradient associated with the temperature variations drives flow toward the corner.

This problem is examined numerically for different Marangoni numbers ranging from

I to :300 using a Green's function approximation method for the viscous case (in the

limit as the Reynolds number approaches zero).
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DISCLAIMER

The computer programs in the appendices are supplied on an "as is" basis, with

no warrantees of any kind. The author bears no responsibility for any consequences

of using the programs.
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I. INTRODUCTION

This project is meant to increase the understanding of a particular bound-

ary value problem with real-world applications. The phenomenon of thermocapillary

convection has an important role in fluid flow, especially in welding processes, where

convection ini the molten metal can affect the microstructure of the material. A

major tool in this project is using the Green's function to solve the partial differ-

ential equation (PDE). This work combines the use of a Green's function (for an

infinite domain) with a numerical scheme to solve an elliptic PDE. The Marangoni

number M, which gives the relative importance of thermal convection to thermal

diffusion, will be incremented in the Conservation of Energy equation over a broad

range to study how flow affects the temperature field in the cold corner. When Al is

small, the temperature field is conductive and the flow is dominated by viscous forces;

large M corresponds to a vigorous flow with thermal convection becoming dominant.

Mathernatica and MATLAB were chosen as the software tools, due to their versatile

mathematics capabilities.

A. MOTIVATION

The role of thermocapillary convection is important in the fluid flow and heat

transfer of a number of materials processing techniques, notably welding, crystal

growth, and other processes involving concentrated energy beams [Ref. 1]. Typically,



these processes involve a pool of molten material with severe temperature gradients

along the surface, and it is the surface tension gradient associated with these temper-

ature variations that drives the flow.

Thermocapillary convection refers to the heat transfer/fluid mechanics phe-

nomenon driven by surface tension gradients when aisociated with surface temper-

atures non-uniform in nature. Major consequences of this type of convection are:

(a) a change of temperature distribution and hence the weld's melt pool shape, (b)

solidification and cooling rates of the melt pool, and, in turn, (c) a variation in the

final product microstructure. Convection increases the overall transport and growth

rate, which is desirable. However, it also seems to affect the morphology of the solid

adversely [Ref. 2], since the characteristics of the solid are determined by what occurs

near the fluid-solid interface. Convection can change the solid's composition across

this interface, through heat release, density change, and other processes, causing

noruniformities which in turn change the solid's crystal structure and shape.

B. PHYSICS OF THE PROBLEM

Convection in the molten pool is usually vigorous, with results outlined above.

The predominant forces driving convection are thermocapillary forces, which include

changes in surface tension with temperature along the surface of the molten pool.

1. Surface Tension

An understanding of surface tension and its effects is therefore key in

the formation of and flow in the weld pool [Ref. 31. Within the body of a liquid or

2



solid, the net force on any given atom or molecule is relatively small: it is surrounded

by a group of other atoms which exert forces in all directions so that there is little or

no resultant. At the surface, however, there is a resultant attraction inwards because

the molecular density is much higher in the liquid than in the surrounding air (or

vapor). Because of this inward force, the surface of a liquid tends to contract to

the smallest possible size, so that drops and bubbles will, in the absence of external

constraints, become spherical in form. Work must be done in order to bring a molecule

from the bulk of the liquid to the surface against the inwardly-acting forces, and the

work required to produce one unit of new area in this way is called the free surface

energy, or free energy. As a result of this tendency of the surfacc to contract, it may

be considered as in a state of tension. The surface tension is the force acting a' .3g a

unit length of a liquid surface.

There are two basic modes of flow generated by surface tension gra-

dients. When there is a gradient of surface tension along (parallel to) an interface,

a shear stress is generated and this may generate flow or affect existing flow. Such

flows were first investigated by Marangoni (1871) and the effect is sometimes referred

to as "Marangoni flow" [Ref. 31. If the gradient is perpendicular to the interface, a

"Marangoni instability" can occur, leading to cellular flows [Ref. 2].

The surface tension of a liquid generally decreases with increasing tem-

perature. If part of the free surface should become locally hotter than the rest, as a

result of some small disturbance, fluid is drawn away from the region by the action of

3



surface tension. In the welding process, the heat absorbed by the substrate raises the

temperature and develops a molten pool. The surface temperature decreases radially

outward from the center of this pool (where the energy beam is strongest) [Ref. 4].

The surface tension thus increases radially outward from the center, and as the flow

develops, the energy transfer mechanism becomes convective and the fluid flow is

driven by the surface tension gradient. At the liquid-air interface, the pressure force

must be balanced by the surface tension, and is not necessarily zero as it must be at

a free surface without surface tension [Ref. 5]. A finite pressure difference can exist

across the free surface interface and be balanced by the surface tension. When the

fluid at the surface is pulled in the direction of increasing surface tension, the ensuing

motion creates a normal gradient of the tangential velocity [Ref. 1]. The motion is

also accompanied by a shear stress generated by the Marangoni flow, which balances

the pressure force due to this surface tension gradient. This shear stress provides a

balance, since the fluid motion is often caused by varying temperature distributions

in the fluid, which are associated with surface tension non-uniformities. In turn, the

shear stress acts on the fluid in the interior of the molten pool, setting up a bulk

convective motion.

2. Thermocapillary Flow

In a heat transfer system, the measure of intensity of convection relative

to conduction is the Peclet number, and the Peclet number based on a thermocapillary

velocity is the Marangoni number, designated in this paper as M, which is the basic

4



dimensionless parameter of thermocapillary convection. M measures the strength of

temperature (thermal energy) convection relative to diffusion. Thus, large values of

M will often lead to the formation of thermal boundary layers. Chen associates ther-

mocapillary flow encountered in materials processing with high Marangoni number

[Ref. 11. For many practical materials processing operations, the Marangoni number

is of the order of 10' or above.

3. Thermal Convection

Consider a two-dimensional rectangular weld pool, with one hot wall

and one cold wall, each perpendicular to the weld surface (as considered by [Ref. 61).

Numerical evaluation of the local heat flux shows a concentration of the thermal gra-

dient near the cold corner [Ref. 1, 6]. As Al increases, the temperature distribution

gradually changes from a linear distribution (characteristic of conduction solutions)

to one characteristic of high Peclet number convection. The cold corner velocity dis-

tribution is apparently due to the fact that the intense convection associated with

the surface motion toward the cold wall has brought the warm fluid forward, signif-

icantly compressing the region of temperature variation; this in turn intensifies the

local thermocapillary forces driving the flow. In between the hot and cold walls is

a region of constant surface temperature. The flow then can be viewed as a half-jet

[Ref. 1], maintained by inertia, issuing from the hot corner.

In typical applications, the cold wall represents the solid-liquid phase

boundary. Hence, any concentrated heat flux would affect the shape of this melt-

5



ing/solidification interface, i.e., changing the shape of the molten weld pool. The

non-uniformity of the heat flux is not fully understood, which led Chen to state, "It

would seem then that the structure of the cold corner flow is one of the most critical

issues to be studied in the future" [Ref. 1]. This research concentrates on effects of

temperature and flow in the cold corner region.

a. Historical Note

Historically, Ludwig Prandtl credits Osborne Reynolds to have

been the first who clearly recognized the part played in heat transfer by the velocity

of flow [Ref. 7]. In short papers published in 1874 [Ref. 8] and again in 1900 [Ref.

9], Reynolds points out that the theories on heat transfer up to that time, in which

conductivity alone had been taken into account, must be in error and therefore revised.

Reynolds asserts that the main phenomenon in heat transfer is that particles move

from the interior of the fluid up to the boundary and bring their heat with them. The

resistance to flow arises in the same way as a result of the particles bringing their

velocities from the interior of the fluid up to the boundary or surface, where they give

rise to frictional forces. Unaware of Reynolds' work, Prandtl rediscovered the same

train of thought, but in a more accurate mathematical form, in 1910 [Ref. 10]. Both

Reynolds' and Prandtl's arguments are now referred to as the momentum theory of

heat transfer [Ref. 7].

6



C. PREVIOUS RESEARCH

Comparing recent studies, Chan, Mazumder, and Chen [Ref. 4] present a

three-dimensional model for thermocapillary convecLion during surface melting due

to a moving laser heat source. They use a perturbation solution to model the three-

dimensional flow with two sets of two-dimensional equations, instead of a more com-

plicated three-dimensional set of equations. The detailed three-dimensional velocity

field gives a quantitative explanation of the mechanism of the mixing process within

the molten pool. In their calculations, the surface of the melt pool is assumed to be

flat to simplify the surface boundary conditions. Using the energy equation in cylin-

drical coordinates within the molten pool, they derive finite-difference equations,

central-difference for the diffusion terms, and upwind-difference for the convective

terms (governing the velocity and temperature) and they solve the energy equation

by the alternating-direction iteration method. Then, the velocities within the molten

pool are time-step iterated for a prescribed number of iterations. Using this updated

velocity field, the energy equations are iterated next. Thus, the temperature field

for the global iteration is obtained. The initial guesses are the steady-state conduc-

tion temperature and zero *,,'ocity for the perturbation solution. They find that the

presence of the thermocapillary convection changes the physics of the process from

conduction to convection dominated.

Cowley and Davis [Ref. II] analyze the thermocapillary flow near the hot wall

for vigorous flow, formulating a canonical M -+ oo convectionk problem near the hot

7



wall for large M values. This involves a distinguished limit where both M -+ oo and

the Prandtl number P -+ oo in a relative way. They find that the fluid flows up the

hot wall and away along the free surface.

Zebib, Homisy, and Meiburg [Ref. 61 compute steady thermocapillary flows in a

two-dimensional square pool (i.e., with an aspect ratio of unity) by a finite difference

procedure and find that the vorticity is discontinuous at the hot and cold corners and

will assume different values as a corner is approached on different paths. Boundary

layer formation is observed for large M values. Their numerical evaluation of the

local heat flux along the cold boundaries shows that indeed, most of the heat transfer

occurs near the cold stagnation point. This contrasts with the heat flux distributions

along the hot wall, which are evenly distributed. There is also a singularity at the

cold corner which is rather unique for the thermocapillary flow. In addition, a more

serious problem of discretization error, in this case shared by both the finite difference

and finite element methods, is the false diffusion caused by the popular upwind-

differencing scheme.

8



II. PROBLEM STATEMENT

Figure 1 shows the generic weld picture of an incompressible Newtonian liquid,

with a heat source penetrating and creating a molten pool within the metal solid. As

an idealized problem, consider a magnified view of the three-phase junction ("zooming

in" to where the air, solid, and liquid meet), which is bounded on the left and top.

To the left is a vertical solid wall, and above the liquid is a horizontal free surface,

thus creating a semi-infinite domain (quarter-plane, see Figure 2). The wall is kept

at a constant cold temperature, designated To, to a depth d = 1. (This unit depth

is equivalent after rescaling to any other depth). Below this point, the rest of the

wall is at the hotter ambient temperature of the surrounding fluid, designated Th.

The surface tension is assumed to be a decreasing function of the temperature, and

to be strong enough to keep the surface flat. The surface tension gradients drive the

fluid flow, which is assumed steady and two-dimensional, toward the upper left cold

corner. The flat free surface is thermally insulated.

Then the equations governing the thermocapillary convection in the cold corner

are conservation of mass, momentum, and energy:

V.u= (II.1)

pu. Vu = -Vp+ ,V 2u (I.2)

pcpu. VT = kV 2T (11.3)

9



Ail
Heat Source

Sol id

Figure 1. Generic Problem Formulation: A heat source creates a large molten pool of
an incompressible Newtonian liquid bounded above by air and beneath by the solid
metal.
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Air

SoI Fluid

SFlow Direction

Figure 2. Problem Formulation with Boundary Conditions: A semi-infinite quarter-
plane is defined above by a horizontal free surface (T,, = 0) and to the left by a vertical
solid wall. The wall is cooled (T = T,) to a depth y = 1. Below this point, T = Th,

the sarne warmer temperature as that of the pool fluid far away from the wall and
surface.
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with the following boundary conditions:

as x, y -4 0: T- Th, u,v-+O (II.4)

at y =0: TI,=0, v-=0, p•uy= -T., (I5

atx =O: T=T,, (y<d), T=Th(y>d), u=v=O (11.6)

Here u is the velocity vector with components u(x,y) and v(x,y) in the x

direction (horizontally rightward) and y direction (vertically downward), p is pres-

sure, T is temperature, p is density, p is viscosity, cp is specific heat, k is thermal

conductivity, and -y (assumed constant and positive) is the negative of the derivative

of the surface tension with respect to temperature. The boundary conditions specify

that the wall is piecewise isothermal with no fluid slip, and the flat free surface is

thermally insulated, with thermocapillary forcing.

A. DIMENSIONLESS FORM

To nondimensionalize the equations, use the following scale factors:

uT-Th x' x/d, t'=- (11.7)T /- Th' d(I

where u, = -yT/yi is a representative velocity, the temperature difference is T, - Th,

and the representative length is d. Dropping primes, the energy equation simplifies

to

Su. VT = V 2T (11.8)

12



where u and T are now dimensionless quantities. Here, (uod) / K is defined to be the

dimensionless parameter M, the Marangoni number, so the energy equation becomes:

V 2T = M u VT (.9)

with boundary conditions:

atx=0: T=-1, wheny< 1, u= v=0

atx=0: T=O, wheny> 1, u=v=0

aty=0: T1 = 0, uY,=T", v=0

asx, y--+oo: T-40, u,v--+0 (11.10)

This is a convection-diffusion equation. We seek to find an expression for the steady

temperature T(x, y). In the initial case, with Marangoni number M set to zero, we

have Laplace's equation

V 2T = Tx,(x, y) + Ty(x, y) = 0 (1I.!1)

Now, to nondimensionalize the Momentum Equation, in addition to the pre-

vious scaling factors, let:
I d(p- po) (1I.12)

where p0 is some representative value of the modified pressure in the fluid. Then the

steady-state Momentum Equation becomes (in tensor component notation):

-I, i + (1.13)
Ox4 R L •',÷ a~jx' Ox'

13



in which the Reynolds number R = (pdu,)/pa = (du,)/I, where v = p/p is the

kinematic viscosity. Dropping the primes gives (in vector notation):

R u Vu = -Vp+ V2u (11.14)

where u and p are now the nondimensional velocity and pressure. The mass equation

11.1 retains the same form in nondimensional variables.

B. VISCOUS LIMIT: R --+ 0

The presence of the non-linear term u • Vu makes solution of the equation of

momentum very difficult for any but the simplest flow fields [Ref. 12]. When inertia

is negligible everywhere in the flow field (i.e., R -+ 0), the Momentum Equation

l)CC(OlIUes

Vp=V 2 u (11.15)

In this limit, the flow equations are linear, allowing the use of a variety of standard

techniques, in particular the Green's function method. Note that R -4 0 implies a

material with a large Prandtl number, so the method doesn't apply directly to metals.

Then, with no inertia, the flow everywhere depends only on the instantaneous thermal

gradient along the surface (even if the flow is unsteady). Thus the solution satisfies

the boundary conditions and equations of motion with inertia forces neglected. The

components of acceleration of the fluid at any point, evaluated according to this solu-

tion, are proportional to u'/d [Ref. 121. The viscous forces, also evaluated according

14



to this solution, are of order (pu,)/d', so that the assumption of negligible inertia

forces is self-consistent if (pud)/p << 1 (R << 1).

C. STREAM FUNCTION AND VORTICITY

Since the boundary conditions involve u alone, the pressure can be eliminated

by taking the curl of (11.15), and the problem is to find the solution to

V u= 0 (11.16)

V 2 (V X u) = V2w = 0 (11.17)

where w = V x u is the vorticity. In the present case of two-dimensional motion

with negligible inertia forces, it is convenient to introduce a stream function %P so

that the conservation of mass equation is satisfied identically and the single non-zero

component of vorticity becomes w = -V 2qi. Then, V 2(V x u) = 0 becomes

V2(V 2'l) = 0 (11.18)

which is the biharmonic equation. Here %P is the stream function, such that the

velocity components (u, v) are given by u = %P , v = -%P,. A significant advantage

in using a single scalar function kF formulation for the flow is that a single PDE is

obtained, instead of coupled PDEs for the pressure p and velocity components u and

v. The trade-off for this advantage is that now the partial differential equation is of

a higher order.

15



III. GREEN'S FUNCTION METHOD

As stated earlier, this project concentrates on the effect of temperature and

velocity in the cold corner region at various Marangoni numbers. The problem is

studied using a Green's function approach to represent the flow. An understanding

of the theory behind the Green's function is relevant here, and an example in one

dimension is given. The Green's function is a response to a boundary value problem

when a forcing function represents a concentrated unit source and the boundary

conditions are homogeneous. This is followed by the specific application of the use of

the Green's function to the problem.

A. EXAMPLE IN ONE DIMENSION

As an example, consider first the problem consisting of the ordinary differential

equation

£ 4 + f(x) = 0, (III.1)

where L is the differential operator

d (d) d 2 dp d
£=• V )+ + q=qPx--+7 - (+II.2)

together with homogcneous boundary conditions, each of the form

a d) + =0 (11I.3)
dx
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for some constant values of a and 0I, which are imposed at the end points of an

interval a < x < b. [Note: if p(x) = 0 at an end point, the corresponding appropriate

end condition may require merely that O(x) remain finite at that point.]

The function f may be a given direct function of x, or it may also depend upon

x indirectly by also involving the unknown function 4l(x), and so being expressible in

the form

f(x) = F(x,$(x)). (111.4)

In order to obtain a convenient reformulation of this problem, the Green's

function G must first be determined, for a given ý, given by Gj(x) when x < ý and

by G2 (x) when x > ý, and which has the following four properties [Ref. 131:

1. The functions G1 and G2 satisfy the equation L G = 0 in their intervals of

definition, that is, £ G , = 0 when x < ý, and L G2 = 0 when x > ý.

2. The function G satisfies the homogeneous conditions prescribed at the end

points x = (a and x = b; that is, G, satisfies the condition prescribed at x = a, and

G 2 that corresponding to x = b.

3. The function G is continuous at x = •; that is, Gj(ý) = G2 (ý).

4. The derivative of G has a discontinuity of magnitude -1/p(ý) at the point

x= ; that is, G'.(ý) - G'(ý) = -11p(ý).

It is assumed that the function p(x) is continuous and nonzero inside the

interval (a, b), so that the discontinuity in the derivative of G is of finite magnitude,

and also that 1'(x) and q(x) are continuous in (a, b).

17



Then, when the function G(x, •) exists, the original formulation of the problem

can be written as

(lb(x) -- G~x,ý) f(C) dC,(I.)

in the sense that this equation defines the solution of the problem when f is a given

direct function of x, whereas the equation constitutes an equivalent integral equation

problem when f involves 4).

When the prescribed boundary conditions are not homogeneous, a modified

procedure is needed. II this case, denote by G(x, ý) the Green's function correspond-

ing to the associated homogeneous boundary conditions, and attempt to determine a

function P(x) such that the relation

4D(X) = P(x) + fa G(x, C) f (C) dC (111.6)

is equivalent to the differential equation

C 4D(x) + f(x) = 0, (111.7)

together with the prescribed nonhomogeneous boundary conditions. Since

L IG(x, ) f( d = if(x)11.)

the differential equation takes the form f- P(x) = 0 and, since the Green's func-

tion integral satisfies the associated homogeneous bondary conditions, it follows that

the function P(x) must be the solution to the above-stated homogeneous equation

with the prescribed nonhomogeneous boundary conditions. The existence of P(x) is

insured when G(x, C) itself exists.
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The Green's function approach can be expanded to higher dimensions, as in

this research. The usefulness of a Green's function solution rests on the fact that the

Green's function is independent of the nonhomogeneous term in the partial differ-

ential equation. Thus, once the Green's function is determined, the solution of the

boundary value problem for different nonhomogeneous terms f(x) is obtained by a

single integration.

In this research, the nonhomogeneous term is only on the boundary. Note

that flow equations that are considered separately from thermal equations are homo-

geneous with homogeneous boundary conditions, except along the surface, where the

thermal gradient gives rise to nonhomogeneous boundary conditions. By defining a

Green's function in two dimensions as G(x,y, ), the solution 4((x,y) can be found

as 0 (x,y) = f. G(x,y, ) f(ý) dý. Note further that no determination of arbitrary

constants is required, since 4P(x, y) as given by the Green's function integral formula

automatically satisfies the boundary conditions, as stated earlier.

The Green's function G(x, y, ý) can be identified as the response at the point

to a forcing function f which represents a unit impulse at the point x, with homoge-

neous boundary conditions. A more general nonhomogeneous term f on an interval

a < x < b can be regarded as a set of impulses with f(x) giving the magnitude of the

impulse at the point x. The solution of a nonhomogeneous boundary value problem

in terms of a Green's function integral can then be interpreted as the result of su-
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perimposing the responses to the set of impulses represented by the nonhomogeneous

forcing term f(x).

B. GREEN'S FUNCTION FOR FLOW

The flow field can be represented using the Green's function for a point force

near a rigid wall, directed toward the wall. The Green's function for the stream

function due to a unit (dimensionless) point force in the x direction applied on the

surface at the point (ý,0) is:

1 [ log 2xy] (111.9)(;x~,) • ylog kr• r

where

r+-V(x+ )2 +y 2, r_-./(x- ) 2 +y 2  (111.10)

Blake [Ref. 14] and Hasimoto and Sano [Ref. 15] provide a detailed derivation

of the form of the Green's function used herein. Treating the effect of the wall in

two dimensions only, one can derive the Lorentz formula for the image system due to

the presence of the wall. The image system consists of a combination of a Stokeslet,

Stokes-doublet, and source-doublet, and is used to satisfy the no-slip condition at

the wall. A flowfic2d plot of the Green's function with ý = I is shown in Figure 3.

Notice the behavior of the point force at x = 1. The flow field is concentrated at the

point force and spreads out in the form of an ellipse from the cold corner. As r >> ,

the velocity decays rapidly. Also, more importantly, the flow down the vertical wall

moves away from the wall (y axis), except near the surface where y = 0.
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Figure 3. Green's Function with Point Force at x = 1: Streamlines (contours of stream
function) are shown for a portion of the domain. Closely spaced streamlines indicate
high velocities near the point force. Flow is in the counter-clockwise direction.
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1. Velocity Components for Point Force

The velocity components of the stream function are designated as uderiv

and vderiv, where uderiv is the partial derivative of the Green's function with respect

to the y-direction, and vderiv is the negative of the partial derivative of the Green's

function with respect to the x-direction as stated earlier. A simol;fied expression for

uderiv is given by:

uderIv = G = • 2 x y '- + y' + ± --- + log 7 -+ ] ( 111.11)

A short analysis of uderiv shows a singularity of type log--L. As 7-- -+ 0, y -4 0

and • - x. This relates to an infinite theoretical value of u, the horizontal velocity

component, which will be discussed in the next section. A simplified expression for

vderiv is given by:

1 [ýy ýy xy xy 4ýx( +x)y (111.12)
27r -. -- 7+ r -r+ + r

Alternatively, we can determine the uderiv and vderiv components by taking vectors

tangent to the Green's function streamlines at any point and breaking them down

into horizontal (uderiv) and vertical (vderiv) components.

Consider a point force at the point ý = 1 unit from the corner (in the

x-direction). As stated earlier, uderiv and vderiv are determined for the point force

near the corner, and a velocity vector field plot of horizontal versus vertical velocity

components can be obtained. To gain a better understanding, first consider a large-

scale view, as both the x- and y-directions vary from the corner (0,0) (top left of
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* • 1 % • % - - .

Figure 4. Velocity Vector Field of Point Force at x =1: The direction and magnitude
of the velocity in the domain (0 <_ x < 5, 0 _< y _ 5) are denoted by the arrowhead
on each line segment. The magnitude is greatest at the point force, directed toward

the cold wall.
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Figure 5. Magnified Velocity Vector Field of Point Force at x =1: This view, with,,
domain 0 < x _< 2, 0 < y <ý 2, further emphasizes the greater surface velocity at tile
point force. The flow down from the surface is away from the wall.
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plot) to a distance "far" away (5,5) (bottom right of plot), as shown in Figure 4.

The longer the line segment, the greater the magnitude of the velocity. The direction

of the velocity is denoted by an arrowhead on the line segment. Notice that the

velocity has a larger magnitude at the point force than deep into the fluid. At the

surface (y = 0), the theoretical value from (111.11) of the horizontal component of

the velocity, u, at the point force is infinite; the vertical component v = 0 along the

entire surface, as determined from (111.12), as well as along the wall.

Now, "magnify" the picture, with the far corner (buttom, right) coor-

dinates at (2,2) (see Figure 5). The arrow scaling factor is the same as in Figure 4,

to give perspective. Notice that the counter-clockwise flow with large magnitudes at

the point force (0,1). There appears to be a noticeable increase in magnitude at the

point force. As the flow moves down from the free surface, notice again that the flow

is away from the wall, and begins to trace out an approximately elliptic streamline.

2. Velocity Components for Thermocapillary Forcing

Thermocapillary forces deal with the variation of surface tension with

temperature along the surface of the domain. The velocity components of the ther-

mocapillary forcing are the nonhomogeneous terms that sum up the changes in tem-

perature times the partial derivatives of the Green's function (uderiv and vderiv) over

the length of the surface. In particular, T'(ý) is the function used to weight the point

sources along the free surface.
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In abbreviated form, the horizontal component of the velocity can be

calculated as:

u(x,y) = T'(ý) uderiv(x, y, ý) dC (111.13)

Similarly, the vertical component of the velocity appears as:

v(x, y) T'(ý) vderiv(x, y, ý) dý (111.14)
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IV. CONDUCTIVE CASE: M = 0

To compare the convective effects of higher Marangoni number flows, the con-

ductive case M = 0 is used as a comparative base. With M = 0, no effects of

convection exist. Thus an analytic solution for the temperature distribution call be

obtained, which should be valid as all initial distribution for small M values.

A. ANALYTIC SOLUTION FOR TEMPERATURE

Since the normal derivative (T,) onl the boundary of the free surface is zero, the

quarter-plane problem can be mirrored into a half-plane problem. The homogeneous

Neumnann condition is thus absorbed into the half-plane problem by symmetry. This

gives a Dirichlet problem for the right half of the xy plane.

The method of solution is to obtain a new Dirichlet problem with conformal

mapping for a region in the complex uv plane. Note that the u and v here are

the components of the complex plane w = u + iv, not the same as the velocity

components. Since a function which is harmonic in a simply connected domain always

has a harmonic conjugate, the solution of this boundary value problem for such a

domain is the real or imaginary part of the analytic function. That region will be

the image of the half plane under a transformation w = f(z) which is analytic ill the

domain x > 0 and which is conformal along the boundary x = 0 except at the points

(0, ± 1) where it is undefined. Two theorems are now applied.
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Theorem 1 (Transformations of Harmonic Functions.) Suppose that an ana-

lytic function

w = fz) u(x, y) + i v(x,Y) (IV.1)

maps a domain D. in the z plane onto a domain D.. in the w plane. If h(u, v) is a

harmonic function defined on D,,, then the function

H(x, y) = h tu(x, y), v(x, y)] (IV.2)

is harmonic in 0D.

Theorem 2 (Transformations of Boundary Conditions.) Suppose that a trans-

formation

w = f(z) = u(x,y) + i v(x,y) (IV.3)

is conformal on a smooth arc C, and let F be the image of C under that transforma-

hon. If, along F, a function h(u, v) satisfies either of the conditions

dh
h=h0 or A-=0 (IV.4)
dh

where ho is a real constant and • denotes derivatives normal to F, then, along C,

the function

H (x,y) = h(u (xc,y), v (x,y)] (IV.5)

satisfies the corresponding condition

dH
H=ho or d- =0 (IV.6)

dN

where 12H denotes derivatives normal to C.
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Thle proofs of these theorems can be found in Complex Variables and Applications,

by C(hurchill and Brown [Ref. 16].

A harrmonic function of u and v' will be transformed into a harmonic func-

tion of x and y, and the boundary conditions in the ut, plane wili be preserved on

corresponding portions of the boundary in the xy plane. Let us write:

" - i = ICl'81 anid z + i = r 2 e''2 (IV.7)

where 7r K< k < -7r (k = 1,2).

The transformation w = log (• = In n + i(0 1 - 02) is defined on the right

half plane x > 0 except at z = ±i. The right half plane maps to the strip -7r < v < 0

in the tv plane. The cold wall (T = -1, the imaginary axis between -i and i) maps

to the line v = rr in the complex plane. The surface of the pool (with T, = 0) maps to

the real axis v = 0, with u < 0, and the rest of the wall (imaginary axis above i and

below -i) maps to v = 0. A bounded harmonic function of u and v that satisfies the

boundary conditions is 7' = -- v. It is harmonic since it is the imaginary part of the
entire function (-1w). If = 0, T = 0; v = 7r, T = -1. Since v = 1(w) = arg(-+,'),

we solve for v:

, = arg[+ (y+) (IV.8)

= arg['2 + Y 2 - 2x)z] (IV.9)
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= arctan -2x (IV.1O)x2 +y2_1

So, T(x, y) i-v, which gives:

1 2x
T(x, y) = - arctan (IV. 11)

r x 2 y2 + 12

Since the function T = -iv is harmonic in the strip -?r < v < 0, and the

transformation is analytic in the half plane x > 0, Theorem I is applied to conclude

that the function T(x, y) = ±- arctan 2 is harmonic in that half plane. The

boundary conditions for the two harmonic functions are the same in corresponding

parts of the boundaries because they are the type h = h0 (as required in Theorem 2).

The bounded function T(x, y), therefore, is the desired solution in the case where the

Marangoni number M = 0. A 3-dimensional plot of this temperature field T(x, y) is

shown in Figure 6. Note the discontinuity down the vertical wall at the point (0, 1).

The velocity components of the thermocapillary flow will depend on the derivative of

the temperature solution with respect to the x-direction, which becomes:

T'(x) =_ T.(x,0) = -2 (IV.12)
ir( + x2 )(I.)

A two-dimensional plot of this derivative is shown in Figure 7. As expected, T'(x)

dies out as x increases.

B. RESULTING FLOW

To solve for the velocity components of the thermocapillary flow (with M = 0),

it is necessary to integrate numerically the product of the uderiv and vderiv compo-

nents of the Green's function (as functions of x, y, and ý) with T'(ý), from zero to
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Figure 6. Initial Temperature Field T(x, y) = 1 arctan 2 Three-dimensional
plot of harmonic temperature field. The wall (y-axis) is maintained at a cold tem-
perature to a depth of unity, with warmer temperature below.
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Figure 7, T'(x, 0) = Plot of the derivative of the temperature solution. As x

increases, T,(x, 0) dies out. This derivative is used in the calculation of the velocity
components.
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Figure 8. Velocity Field Using Numerical Integration (M = 0): Obtained by inte-
grating the product of uderiv and vderiv components of the Green's function with
T'(ý). The velocity decays as it flows down from the surface and away from the wall.

infinity. Mathematica's NIntegrate function was used to perform numerical inte-

gration in compuLing the values of u(x,y) and v(x,y). This function attempts to

numerically integrate over a range that includes singularities at intermediate points

Xi. If there are no singularities, the result is equivalent to an integral from 0 to oc.

Finally, results from the numerical integration are combined into a vector field

plot. Figure 8 shows the velocity field from the corner out to a distance of 5 units

from the wall and surface. The velocity is extremely rapid at the surface, as expected,

and the velocity is driven to the corner in a counter-clockwise direction (i.e., the flow

all along the surface is toward the wall). The flow is then down from the surface along
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the wall, into the bulk fluid. As the fluid flows down from the surface, the velocity

decays rapidly and it also flows away from the wall as it decays. This rapid decay of

velocity implies that no thermal boundary layer forms on the wall.
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V. NUMERICAL METHODS

To model the revised energy equation (11.9), two numerical methods were

explored. The first, a FORTRAN subroutine from the IMSL, Inc. library, treated

the right-hand-side of (11.9) as an input function and solved the remaining Poisson

equation. The second method involved solving (11.9) by the standard alternating-

direction implicit (ADI) method, using MATLAB, a high-performance interactive

software package for numerical computation. To use these two approaches, the domain

had to be modified to be a finite one. (Both numerical schemes required that a finite

domain be used). After some initial calculations, it was determined that the domain

should be a rectangle with two sides as the surface and wall containing the cold

corner, and the other two sides a distance of four units in the horizontal (parallel to

the surface) direction from the wall, and three units in the vertical direction from the

surface. Recall that the wall is kept to a constant temperature only to a depth of

one unit. Far away from the cold corner, the fluid temperature is warmer than at the

corner. The boundary conditions as x, y -+ oo are T -+ 0; thus T = 0 at x = 4 and

y = 3. Results revealed that the size of the rectangular domain accurately modeled

the much more complex real geometry of the problem.
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Figure 9. Conduction Solution of the Temperature, T(x,y): Contour plot of initial
distribution used for numerical methods. The homogeneous boundary conditions at
the ends of the domain (x = 4, and y = 3) give rise to the shape of the outer contour
line (isotherm).

A. POISSON APPROXIMATION (FORTRAN)

As a first approach to solve (11.9), existing algorithms were investigated and

a FORTRAN routine was selected. It has the flexibility of modeling the problem

without many complications. The only drawback was finding a convenient method

to graphically display the output data. The conduction solution of the temperature

distribution, T(x, y) = 1- arctan - 2 , is shown in Figure 9. Using Mathematica,

values for M u - VT were calculated in a rectangle, with Ax = Ay on a grid of

0 < x < 4 by 0 < y < 3. A table of values was generated using a given grid size and

M = 1. These values were then read into a FORTRAN program to solve the Poisson
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equation:

V2 T = f(x,y) (V.1)

using f(x, y) = M u • VT from the input file. The tables of u • VT were generated

for various grid sizes. A modification of the FORTRAN subroutine FPS2H from the

IMSL, Inc. library [Ref. 17, 18] was employed. The algorithm solves the equation

a 2T i 2T
--- 2 + - + cT = p (V.2)

on a rectangular domain (as specified above). In this case, c = 0 and p is the

input file f(x,y). By setting the right-hand-side of the Poisson equation equal to

f (x, y), an approximation to the convection-diffusion equation is obtained. Note that

the FORTRAN program solves the Poisson equation, not the convection-diffusion

equation. The forcing function term in f(x, y) in the Poisson equation should depend

on the solution temperature T, as it does in the convection-diffusion equation.

A copy of the subroutine is attached in Appendix A. The input arguments are

the Mathematica-generated value for each (x, y) grid point (a user-supplied function

to evaluate the right side of the partial differential equation) and the user-supplied

boundary conditions, as well as the grid sizes (in both x- and y- directions), and the

output is the solution to the Poisson equation. The routine solves Poisson's Equation

on a two-dimensional rectangle using a fast Poisson solver based on a finite difference

scheme on a uniform mesh. It discretizes the problem and then solves it using Fourier

transforms [Ref. 18].
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Figure 10. Temperature Distribution obtained from FORTRAN Routine (h = 0.25,
M = 0): Contour plot of temperature distribution (purely conductive).

Figure 10 depicts the purely conductive temperature distribution (M = 0

case) obtained from the FORTRAN subroutine, using a uniform mesh of 0.25. Figure

1 I illustrates the FORTRAN temperature solution when the Marangoni number is

increased to M = 1. Notice the conductive behavior of the flow field. The flow has

a counter-clockwise motion, directed toward the cold wall near the surface and then

away from the wall as it flows away from the surface. Figure 11 shows virtually no

change from the M = 0 case. With the FORTRAN approach, even the case where

M = 10 showed no substantial change from Figure 10. However, as M is increased,

the resulting temperature solution becomes less stable. For example, when M = 100,

the numerical method broke down and unstable results were obtained.
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Figure 11. Temperature Distribution obtained from FORTRAN Routine (h = 0.25,
M = 1): Contour plot of temperature solution showing no evidence of convection in
the flow.

As mentioned above, this approach had limitations. To compute the input

data with Mathematica was very time- and resource-consuming, due to the numerical

integration algorithm in Mathematica. Also, output data had to be transferred to and

rewritten as Mathematica files, in order to graphically display the results. Moreover,

the Poisson approximation is only valid for small M values. Thus, the effort for one

time-step iteration was somewhat complicated, and an alternate numerical approach

was investigated.
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B. FULL EQUATION (MATLAB)

The time-dependent problem can be expanded as:

M ( 092 492~r
OdT OT OT T T+ UT + VT = - - - (V.3)

t X Y) _jX2 + y2

It is assumed that the time-dependent solution will converge to a steady-state solution.

Equation (V.3) was solved using an alternating direction implicit (ADI) method as

developed by Polezhaev in 1967 [Ref. 19]. This method treats each time step as two

half steps. The above equation can be substituted into the scheme as:

STEP 1:

1t At 1

2+ 2"' 2 Ax M ' = _ M 7 (VA4)

STEP 2:

1y M ] ' = At _ S -(u,72 1 .+1 MtS)] Ti- (V.5)

where the central-difference operators S and 52 are defined as:

J.Tj= Tilj- ij

6Y Ti, = Tij+1 - Ti,..- 1  (V.6)

and

S. T, T •1, - 2 T:,', + Tin,$• T,• = +',, (AX,)
T,"+ - 2 T"+T

t 2 Tit = (-)13+ + i,j-I (V.7)
~i 1,3(AY),

40



As a result of splitting the time step in this algorithm, only tridiagonal systems of

linear algebraic equations must be solved (at each step). This method is first-order

accurate with a truncation error of O[At, (AX) 2 , (Ay)2] and is unconditionally stable

for the linear (no convection) case.

The scheme was coded using MATLAB 4.0 with Ax = Ay on a rectangular grid

oft < x < 4 by 0 < y < 3. The problem's boundary conditions as stated earlier were

incorporated into the scheme. In addition, the temperature at the extreme boundaries

(x = 4 and y = 3) was set to zero. A copy of the code is attached in Appendix B.

As noted in the comment lines of the code, to set the boundary conditions at each of

the four sides of the rectangle, some of the coefficients for T!, T., and T!,"' had to

be manipulated. By setting these coefficients to zero at key positions, the required

boundary conditions for the iteration were preserved. These manipulations ensured

adherence to the boundary conditions without altering the solution method inside

the boundaries.

Several subroutines are called from the main program, ADI.m. These include:

TINIT.m, TRAP.m, UDERIV.m, VDERIV.m, CROUT.m, and CROUTSLV.m. The

first of these subroutines, TINIT.m, creates the initial temperature distribution based

on the chosen grid size:

1 2x
T(x, y) = - arctan 2x (V.8)7r x2 + y2_1

with appropriate boundary conditions. To perform the numerical integration in (2),

TRAP.m uses a trapezoidal technique in summing the integrand for all ý between 0
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and the far right edge (x -; 4). UDERIV.m and VDERIV.m calculate the value of

the respective derivative to the Green's Function at the particular (x, y) point in the

grid.

The calculation of vderiv is straight-forward; however, uderiv has a logarithmic

singularity along the surface (y = 0) at x = •. Thus, the algorithm had to be modified,

in order to solve for the effective uderiv value at the point of singularity. Let this value

be upeak, and let the grid spacing be denoted as h. Using a trapezoidal representation

around the singularity, an expression Au is obtained for the contribution of thii,

region:

Au(x,0) = +T'(x) udeiiv(x,0) dx (V.9)

or, by the trapezoidal rule,

Au~x,0) "• T'() hI ude,'iv(ý - h,0) + Upeak + I udeiv(ý + h,O) (V.10)

assuming that T' does not change drastically in the vicinity of the singularity. Recall

that uderiv (111. 11) is defined as:

udeiv [-2&x y2  y2  4ýxy 2 +o r+)

u =+ r2- + r+ r+ + log((V.])

Thus, setting y = 0 gives:

uderiv(x,0) = l {og(x + •) - log Ix - f (x (V. 12)

Letting u'(x, 0) = (27r) Au(x,O)/T'(ý) yields:

u'(x, 0) = " log(x + ý) dx- J log Ix- dx -f+h 2ýx dx(V.13)

S- h f( - h it - h (x + C)2
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4 +hlog(x + ý) dx - __ log(C - x) dx - log(x -) dx

If+h , 2( +~ ]ý dx (V. 14)

2(+h h .
log logdudu- Iog u du

-J2•-hJOO

h- X + (X + ý)2

Evaluating these integrals produces:

u'(x, O) = 2 log(2ý + h) - (2ý + h) + h log( 2 + h) - 2ý log( 2 - h) + ( 2 - h)

+ h log(2ý - h) - 2h log h + 2h - 2ý log(2( + h) - 2__
2& + th

2•.2
+ 2ý 1og(2ý - h) + 2 (V.16)

2ý - h

- 4'2 (V.17)=/h log(2ý + h) + log(2ý - h) - 2 log h + 4ý2 (V.-h7

so that

Au(x,O ) T=(ý) I log(2ý + h) + log(2ý - h) - 2logh + 4-2 (V. 18)
27r [ 4ý2 - h2J

Setting this equal to the trapezoidal representation and dividing both sides by T'(ý)

gives:

h uderiv(ý - h, 0) + Upe,.k + 1 + h,
12 ud]r(V.190)

h [Jog(2ý + h) + log(2ý - h) - 2 log h + 42 (V. 19)
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Expanding the trapezoidal terin and multiplying through by h gives:

2 [log(2ý - h) - log(-h) - J - h + 2irupeak + - [log(2ý + h) - log(h)
2((2+ - h) 2 4 2
2ý +/It) 1 log(2ý + h)±+log(2 - h) -21log h+ 42 (V.20)
(2 + I 4+ 2

Simplifying:

1 4(• 2: - h
2 7rupeak = I [log(2ý + h) + log(2ý - h)] - logh+ + 4C2 2 + (2 -hC/

+ (V.21)

(2C + lI)'

Upeak = I - log ( h2 + 2 C- 50) (V.22)
27r 12 h-2 (4ý2 - h 2 )2 J

The last two subroutines, CROUT.m and CROUTSLV.m, solve the tridiagonal

set of equations for the unknown left-hand-side of each equation in STEP 1 and STEP

2 of the ADI method. CROUT.m computes the LU factorization of a tridiagonal

matrix. CROUTSLV.m then takes those two matrices, L and U, and solves the

matrix equation L U T,,•, = B, by solving first L y = B, and then solving

U 7;,,• = y. In this case B is the matrix consisting of the right-hand-side of each

equation in STEP I and STEP 2.

As the Marangoni number M increased, the steady-state results from earlier

(lower M values) iterations were used as initial conditions. For example, the steady-

state temperature and velocity values for the case where M = 30 were used as input

readings for the M = 100 case. ADI.m was adjusted to read the steady-state values as

input and begin iterating with those values. In this way, TINIT.m was not used, and
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the steady-state temperature and velocity distributions were reached more efficiently.

Since the grid spacing, h, for M = 30 was larger than that used for M = 100 (as will

be explained in the next chapter), lineýar grid interpolation of the temperature and

velocity distributions was used. This was accomplished by stretching those matrices

linearly with simple MATLAB matrix manipulation commands, creating 151 by 201

matrices from 31 by 41 matrices.

The MATLAB program solves the convection-diffusion equation much faster

than Mathematica could. However, due to the nature of calculating initial temper-

atures and velocities at each grid point, several for loops are incorporated into the

scheme, reducing MA TLAB's inherent efficiency.
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VI. RESULTS

Solutions were calculated for several values of M, from M = I to M = 300.

Increments were chosen to be roughly equal in a logarithmic sense.

A. M=1

Small values of M, in this case M = 1, are characteristic of diffusion dom-

inance. Recall that Figure 9 shows the initial temperature distribution over the

domain for M = 1. The numerical scheme calculated temperature and velocity val-
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Figure 12. Steady-State Temperature Distribution from MATLAB routine (h = 0.1,

M = 1): Contour plot of temperature solution showing no evidence of convection ill
the flow.

46



0.5- . - -

o., i / / - -" - - -

2-.
2.5

2.5 t \ ' ' '

0 0.5 1 1'.5 2 2'. 3 3.5 4
Distance from Wall

Figure 13. Steady-State Velocity Vector Field Profile (h = 0.1, M = 1): Th, ,elocity
is highest at the surface, directed toward the wall, and then turns away from the
surface along the wall.

ues to approximate steady-state conditions, in this case reacned after 100 time steps.

To satisfy the ADI scheme's stability requirement, a Courant number v = 0.1 was

used. When a higher v value was used at higher M values (for example, v = 0.4),

unstable results were obtained after only a short number of iterations. Therefore, the

value of v = 0.1 was used for all cases. Figure 12 shows the steady-state temperature

distribution (h = 0.1, M = 1). There is no evidence of convection (as expected).

When compared with Figure 10, which was obtained with the FORTRAN approach,

there is no real difference. This validates that the initial temperature distribution

was a reasonable starting point. Next, consider the velocity profile of the domain, as
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Figure 14. Steady-State Surface Velocity Profile (h = 0.1, M = 1): At approximately
one unit from the wall, the velocity reaches maximum value, then drops sharply as
the flow approaches the wall.

shown in Figure 13. The velocity is highest at the surface, directed toward the wall,

and then turns away from the surface along the wall. At approximately one unit away

from the wall (along the surface), the velocity reaches its maximum value (as seen in

Figure 14), and it then drops sharply as it approaches the wall, also as expected.

B. M=3

The Marangoni number was increased slightly from M = I to M = 3, keeping

the uniform grid spacing h = 0.1. Figure 15 shows the steady-state temperature

distribution of the domain. This figure is virtually identical to Figure 12 (where M =

1), implying no effects of convection in the distribution. Also, the surface temperature
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Figure 15. Steady-State Temperature Distribution (h = 0.1, M = 3): Contour plot
of temperature solution (almost identical to M = 1 case) showing no evidence of
convection in the flow.

profile, surface velocity profile and domain velocity profile are all virtually unchanged

from the M = 1 case.

C. M=IO

As M increases, the temperature distribution gradually changes from a dif-

fusion dominant distribution to one charateristic of high convection. With the case

of M = 10, convection becomes slightly apparent. Figure 16 shows the steady-state

temperature distribution (h = 0.1, M = 10). The temperature isotherms are pulled

somewhat closer to the wall and the velocity components along the surface are slightly

49



0

0.5

('I

2.5

0 0.5 1 1.5 2 2.5 3 3.5 4
Distance from Wall

Figure 16. Steady-State Temperature Distribution (h = 0.1, M = 10): Contour plot
of temperature solution shows slight evidence of convection in the flow.

higher than when M = I (see Figure 14). The temperature distribution is beginning

the transition to convective behavior.

D. M=30

It appears that the steady-state temperature distribution with M = 30 shows

stronger effects of convective behavior, as illustrated in Figure 17. The temperature

isotherms are drawing into the cold corner, leaving almost half of the problem domain

at constant temperature (close to T = 0). The surface velocity has a maximum

closer to the wall than in previous cases. Also, as will be discussed later, the surface

temperature drops more drastically in a short distance from the wall, eventually

leveling out iii the bulk pool.
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Figure 17. Steady-State Temperature Distribution (h 0.1, M = 30): Contour
plot of temperature solution shows stronger effects of convection in the flow. Closely
spaced isotherms indicate rapid growth in temperature near the wall.

E. M = 100

The identical grid spacing Ax = Ay = h = 0.1 used with the cases M = 1,

3, 10, and 30 was employed with M = 100. This violated the stability requirement,

resulting in numerically unstable results. The time step was then reduced to keep the

grid spacing at h = 0.1. This resulted in a stable solution; however, resolution of the

velocity profile close to the cold corner (x -+ 0, y -* 0) was not sufficient to model

what is actually taking place. Hence, a finer grid was required, and h = 0.02 was

employed. Due to the amount of calculations per time step at each grid point, the

numerical scheme's running time increased tremendously. To offset this factor, the

algorithm was modified to calculate new velocities at every 10,h time step, instead
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Figure 18. Steady-State Temperature Distribution (h = 0.02, M = 100): Contour
plot of the temperature solution. The uniform grid spacing is reduced to 0.02 and
the isotherms are very close to each other, forming a compressed region close to the
wall.

of at every step, as in the cases of lower Marangoni numbers. Since the velocities

at each point in the flow changed slightly (if at all) from time step to time step,

this modification was deemed reasonable. In other words, new temperature values

calculated with the ADI process used the same velocity values for ten consecutive

time steps; the new velocities were then calculated at each grid point and the process

was repeated until a steady-state temperature distribution was reached.

Figure 18 shows the steady-state temperature distribution for the case where

M = 100, with a uniform grid spacing h = 0.02. The isotherms are very close to

each other near the cold corner, indicating that a compressed region is forming there.
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Figure 19. Steady-State Surface Velocity Profile (h = 0.02, M = 100): The surface
velocity has a maximum closer to the wall than for lower M values, indicating a rapid
decrease in velocity close to the cold corner.

Figure 19 shows the surface velocity plot of this case, with the velocity slowing signif-

icantly a few grid points from the wall ("beyond" the compressed region). However,

the thermocapillary forcing by the velocity is limited to the region close to the wall,

concentrated near the wall, so that no thermal boundary layer does form, as noted in

[Ref. 20].

F. M = 300

The steady-state temperature distribution for the case of M = 300 is shown

in Figure 20. As with the case of M = 100, the grid spacing had to be decreased

(to h = 0.005) to offer sufficient resolution to study the surface velocity profile. It
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Figure 20. Steady-State Temperature Distribution (h = 0.02, M = 300): Contour
plot of the temperature solution. The isotherms appear to meet at the wall-surface
corner. The transition to convective behaviour is complete.

appears as if the first four isotherms meet in the wall-surface corner. The isotherms

are almost on top of each other, exhibiting the above-mentioned compressed region

in the flow.

The need for reduced grid spacing brought significant computational problems.

A finer grid means more grid points, requiring separate temperature and velocity

calculations at each point, requiring more computer storage space. With matrix sizes

greater than 151 by 201, MATLAB's temporary data file storage capacity was filled to

maximum, preventing a completion of the data run. For example, when, h = 0.005, a

481401 (601.801) by 3 matrix used in the tridiagonal solver (CROUTSLV.m) requires

over 10 Mbytes of storage alone.
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VII. DISCUSSION

A. COMPARISON OF GRID SIZE VS MARANGONI
NUMBER

The ADI scheme is unconditionally stable in the linear case [Ref. 19]. However,

as the Marangoni number increased (M > 100), it was necessary to decrease the

grid size h, to offer sufficient resolution of the surface velocity profile, while still

maintaining numerically stable results. To effectively model the surface velocity,

which will be explained in detail later, required several grid points in the regions of

large variations (close to the wall in steady-state). Thus, a successful "rule of thumb"

was to try to keep the grid size inversely proportional with the Marangoni number.

With M equal to 1, 3, 10, and even 30, a grid size h = 0.1 was sufficient. As M

increased to 100, h decreased to 0.02. As M increased to 300, h had to decrease

to 0.005. However, as stated earlier in the previous chapter, the MATLAB program

could not compute such large matrices. With M = 1000, a grid size of h = 0.001 is

required.

B. COMPARISON OF SURFACE TEMPERATURE VS

MARANGONI NUMBER

As the Marangoni number M increases, thermal convection becomes more

dominant than thermal conduction. Figure 21 shows the steady-state surface temper-

ature profiles for the various Marangoni values (1, 3, 10, 30, 100, and 300). Comparing
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Figure 21. Steady-State Surface Temperature for Various M Values: This plot shows
that as M increases, the surface temperature rises more rapidly as the distance from
the wall increases. As the flow becomes more convective (high M), the change in
surface temperature is concentrated near the wall.

them as M increases, it is readily seen that, as M increases, the surface temperature

rises significantly when close to the wall, and then it levels out in the bulk pool.

Figure 22 shows a plot of a steady-state surface temperature value versus distance

from the wall for various values of M. A particular value of the temperature (in this

case, T = 0.500) is used in the comparison. Using a semilog plot, as M increases,

the distance from the wall at which the surface temperature is equal to 0.500 de-

creases. This graph can be used to model the surface temperature behavior for any

Marangoni number ini the range of 1 to 300. Given T = 0.500 and a Marangoni

number, interpolation can be used to predict how close to the wall this temperature
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Figure 22. Distance from Wall with Steady-State Surface Temperature = 0.5: This
plot takes a constant steady-state temperature and compares the Marangoni number's
effect on distance from the wall. As M increases, the surface isotherm = 0.5, moves
closer to the wall.

value will occur, providing information on the thermal field. The heat transfer at the

wall is proportional to T, the derivative of the temperature solution with respect to

the x-direction. Another useful modeling tool is the comparison of the temperature

gradient at the wall as a function of Marangoni number. Figure 23 shows a log-log

plot of the inverse surface temperature gradient out of the cold corner into the flow

field versus Marangoni number. It is readily seen that as the value of M increases,

the slope of the inverse temperature gradient at the corner also increases.
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Figure 23. Steady-State Inverse Surface Temperature Gradient into Cold Corner:
With low M, the slope is approximately constant; however, as M increases beyond
10, the slope of the line joining data points is approximately -1.

C. COMPARISON OF SURFACE VELOCITY VS MAR-

ANGONI NUMBER

Figure 24 shows a comparison of steady-state surface velocity profiles for vari-

ous Marangoni numbers. All of the curves show a maximum value close to 0.2, except

for that curve where M = 300. The reason for this is the afore-mentioned lack of

resolution which arose by using a grid spacing of h = 0.02, which was not fine enough.

From this figure, as the value of Ma increases, the position of this maximum velocity

"moves" towards the wall. Also, the velocity appears to drop off after this maximum

point. For higher Marangoni values, this decay is more rapid. For example, with

M = 10, the maximum surface velocity value is 0.2058, which occurs at a distance
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Figure 24. Steady-State Surface Velocity Profiles for Various M Values: As M in-
creases, the surface velocity exhibits a sharper rise to its maximum value (closer to
the wall), and a steeper descent into the bulk pool as well.

of 0.7 units from the wall (corner). With M = 100, the peak surface velocity value

is 0.1927, but it occurs at a distance of only 0.1 units from the wall. Figure 25

shows a plot of peak surface velocity values versus distance from the wall for various

Marangoni numbers. This plot can be used to model surface velocity behavior for

any Marangoni number in the range of 1 to 300.
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Figure 25. Distance from Wall with Peak Surface Velocity: This plot compares
maximum velocity for various M values. As M increases, the distance from the
wall at which the maximum is reached is smaller. Also, for small M < 10, the
distance appears constant. For M > 10, the slope of the line connecting data poin's
is approximately -1.
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VIII. CONCLUSIONS

A. USE OF THE GREEN'S FUNCTION

Recall that, when inertia forces are negligible, a stream function is conveniently

introduced to satisfy the conservation of mass equation (11.1). The flow depends ev-

erywhere only on the instantaneous thermal gradient along the surface, and it has

been shown that the flow field can be represented using the Green's function for a

point force near a rigid wall (see 111.9), directed toward the wall. Velocity components

in two dimensions can then be calculated and the time-dependent equation for the

temperature field (using the ADI scheme) can be integrated to reach steady-state con-

ditions. This is possible since the scaling factors (horizontal and vertical lengths and

velocity) are of order unity [Ref. 20]. This means that when R < 1, the scaling used

in the nondimensionalization is appropriate throughout the domain, implying that the

solution is nearly independent of these parameters. If inertia were not neglected, this

could not be possible, as resistance caused by inertial forces could reduce the velocity

and length scales, as noted in [Ref. 20]. Therefore, although the numerical integra-

tion techniques employed in calculating the velocity components require substantial

computational resources, the Green's function method of studying and solving the

problem is a valid one. For example, one advantage of the Green's function is that

the flow can still be represented over the entire quarter plane, so that there is no

artificial recirculation due to the imposed artificial boundaries. The Green's function
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appmoach (lot's not r-equire flow boundary conditions at the computational domain's

bounidarie.s. The flow is assunied isothermal across the boundary and is recirculating,

decayinlg with distanlce.

B. CONDUCTIVE VS CONVECTIVE REGIME

As seen in the steady-state temperature distributions for the various values of

Marangoni number (ranging M = I to M = 300), it appears that the flow is affected

by thermal convection iii the cases where M > 30. In Figure 16 (M = 10), there is

slight evidence of convective effects. With M = 30, the isotherins are beginning to

form a compressed region near the cold corner, and the stronger evidence of convective

effects is apparent. Away from the wall, the isotherms are beginning to fan out in the

shape of an ellipse, directed away from the wall. Figures 23 and 25 show an apparently

inverse relationship of Marangoni number with inverse surface temperature gradient

and peak surface velocity position, respectively, as M > 10. Even in the highly

convective cases (large M value), no thermal boundary layers formed, although the

isotherrms were compressed.

C. LIMITATIONS AND FUTURE WORK

As mentioned earlier, The MATLAB routines could not accurately evaluate

caLses where M > 30U, due to resolution problems. The grid spacing, h, needs to

be reduced significantly its M increases. One solution is to increase the amount of

temporary storage spjace which the computer uses in running MATLAB. An alternate
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method would be to rewrite the numerical analysis code in a more efficient program-

ruing language, such as C, or to use another implicit method. Stone's strongly implicit

method [Ref. 21] calculates a.ll of the next iterative values by a direct elimination

method, assuming that the successive vectors of iterative values will approximate the

exact solution vector very closely after only a few iterations. This method solves a

banded tridiagonal matrix and is economical arithmetically in relation to older meth-

ods. Also, the rate of convergence is much less sensitive to the choice of iteration

parameters than the ADI method [Ref. 21]. In addition, using a nonuniform grid

spacing (where h is smaller near the cold corner) might enable a more accurate sim-

ulation. One ijnure Lechnique is to model the convective behavior with the Green's

function as a function of distance from the cold wall. As the Marangoni number

increases, move the artificial boundaries closer to the wall. This may affect the flow

geometry and convective effects.

The importance of the temperature and velocity distributions obtained from

this research is an indicator that further work is needed. Figure 24 correlates well

with the work of Zehr, et al, as explained by Chen [Ref. 1], comparing the shapes of

the expanded surface velocity distribution curves at the cold corner. This research

simplified the actual problem, revising the geometry and ignoring material properties.

The free surface, which was assumed flat due to surface tension, might in fact not

be fiat. Also, the sudden change in temperature at the unit depth (from T = -1 to

T = 0) is a good first approximation, but the shape of the molten metal/solid metal
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interface might affect this change. Future research should concentrate on accuratel)

predicting the effects of geometry change.

D. MODELING MATERIALS PROCESSING

This research emphasizes the importance of further studying the cold corner

problem. In the) broad arena of materials processing, an increase in the understanding

of the forces that drive convective behavior (thermocapillary, bouyant, or electromag-

netic) is essential. Since convection in the molten metal pool can significantly affect

the inicrostructure of the finished material, theoretical and analytical work in this

field should be continued.
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APPENDIX A. FORTRAN ROUTINE

* PROGRAM PDESOL

* THIS IS A FORTRAN PROGRAM TO SOLVE POISSON'S EQUATION:
* T-XX + T-YY = M (U-X * T-X + U-Y * T-Y)

INTEGER NCVAL, NX, NXTABL, NY, NYTABL
PARAMETER (NCVAL-11, NX-5, NXTABLE-5, NY-4, NYTABL=4)

INTEGER I, IBCTY(4), IORDER, J, NOUT
REAL AX, AY, BRHS, BX, BY, COEFU, ERROR, FLOAT, PRHS, QD2VL,
& TRUE, U(NX,NY), UTABL, X, XDATA(NX), Y, YDATA(NY),

& MATHX, MATHY, M
INTRINSIC FLOAT
EXTERNAL BRHS, FPS2H, PRHS, QD2VL, UMACH
COMMON RHS(0:4, 0:3)
PRINT *, 'ENTER MARANGONI NUMBER'
READ *, M

OPEN(UNIT = 10, FILE = 'DAVE1 DATA', STATUS = 'OLD')

OPEN(UNIT = 15, FILE = 'OUTPUT DATA', STATUS = 'OLD')
DO 5 I = 0, 4
DO 5 J = 0, 3

READ(10, *) MATHX, MATHY, RHS(I, J)
RHS(I, J) = M * RHS(I, J)
WRITE(15, 6) RHS(I, J)

5 CONTINUE

6 FORMAT(5X, F12.7)

* SET RECTANGLE SIZE
.

AX = 0.0

BX = 4.0

AY - 0.0

BY = 3.0

* SET BOUNDARY CONDITION TYPES
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IBCTY(1) = 1
IBCTY(2) - 2
IBCTY(3) a 1
IBCTY(4) - 1

* COEFFICIENT OF U (FOR HELMHOLTZ EQUATION)

COEFU = 0.0

. ORDER OF THE METHOD (2 OR 4)

IORDER = 4

* SOLVE THE PDE

CALL FPS2H (PRHS, BRHS, COEFU, NX, NY, AX, BX, AY, BY, IBCTY,
& IORDER, U, NX)

* SETUP FOR QUADRATIC INTERPOLATION

DO 10 I = 1, NX

XDATA(I) = AX + (BX - AX) * FLOAT(I-1) / FLOAT(NX-1)

10 CONTINUE
DO 20 J = 1, NY

YDATA(I) = AY + (BY - AY) * FLOAT(J-1) / FLOAT(NY-1)

20 CONTINUE

* PRINT THE SOLUTION

CALL UMACH (2, NOUT)
WRITE (NOUT, '(8X,A,11X,A,11X,A,8X,A)') 'X', 'Y', 'U', 'ERROR'
OPEN(UNIT = 20, FILE - 'GRiOUT DATA', STATUS - 'OLD')

DO 40 J = 1, NYTABL

DO 30 I = 1, NXTABL

X = AX + (BX - AX) * FLOAT(I-1) / FLOAT(NXTABL-1)

Y = AY + (BY - AY) * FLOAT(J-1) / FLOAT(NYTABL-1)
UTABL = QD2VL (X,Y,NX,XDATA,NYYDATA,U,NX,.FALSE.)
TRUE = 0.0

ERROR = TRUE - UTABL
WRITE (NOUT, '(4F12.7)') X, Y, UTABL, ERROR
WRITE (20, '(4F12.7)') X, Y, UTABL, ERROR

30 CONTINUE
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40 CONTINUE
END

REAL FUNCTION PRHS (X, Y)
REAL X, Y
INTEGER IX, IY
COMMON RHS(0:4, 0:3)

* DEFINE RIGHT-HAND SIDE OF THE PDE

IX = NINT(X)
IY = NINT(Y)
PRHS - RHS(IX, IY)
RETURN
END

REAL FUNCTION BRHS (ISIDE, X, Y)
INTEGER ISIDE

* DEFINE THE BOUNDARY CONDITIONS

IF (ISIDE .EQ. 2) THEN
BRHS = 0.0

ELSEIF (ISIDE .EQ. 3) THEN
IF (0 .GT. Y .AND. Y .LT. 1) THEN

BRHS = -1.0
ELSE

BRHS = 0.0

ENDIF
ELSE

BRHS = 0.0
ENDIF
RETURN
END
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APPENDIX B. MATLAB ROUTINES

1. ADI.M

function Etnew, steps, u, v] - adi(hx, hy, M, num)
% PROGRAM adi.m
%
% This program uses the ADI method to solve the unsteady 2D convection -

% diffusion equation:

% 2 2
% dT dT dT d T d T
% M (--- + u --- + v --- -- +

% dt dx dy 2 2
% d x d y

% with the boundary conditions:

% T(O, y) = 1 when 0 <= y <=

% T(O, y) = 0 when 1 <= y

% T(L, t) = 0 (L -> oo)

% Ty(x, 0) = 0 (at the surface)
% as well as the initial guess for T(x, y):
% T(x, y) = (1 / Pi) * ArcTan [(2 x) / (x-2 + y-2 -1)]

% The program uses two subprograms for computing the LU decomposition of a

X tridiagonal matrix and then solving L U x = b. A system of equations then
% result of the form (a two-step process):

* n

% (STEP I): A * T B * T
Sx,y x,y

% n+1 *

% (STEP 2): C * T D * T
% x,y x,y

% where A, B, C, and D are all tridiagonal matrices.
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S The input arguments are: hx the spatial step in the x-direction
Shy the spatial step in the y-direction
SM the Marangoni number (a constant)

X

% The output is T, the temperature solution to the unsteady 2D convection -

% diffusion equation.

% The PDE will be solved using a two-step alternating-direction implicit
% (ADI) method, taken from Computational Fluid Mechanics and Heat Transfer,
% by Anderson, Tannehill, and Pletcher, p.167.

% NOTATION: An indexed pair (i,j) corresponds to (row, column), which
% further corresponds to (y-direction, x-direction).
% Index(1,1) corresponds to the surface row, wall column.

% To satisfy the scheme's stability requirement, use a Courant number of .4

dt = .4 * hx * M;

steps = 0;
Nx = 4 / hx;
Ny = 3 / hy;
temp = tinit(hx, hy);
temp(:,Nx+l) = zeros(Ny+1,1);
temp(Ny+l,:) = zeros(1,Nx+l);
temp((1/hy)+1,1) = .5;
temp
k = [0 : hx : 4];

for t = 1:num;
d25 = temp(1,:);
tderiv - ones(1,Nx+l);
for i 1:Nx+l;

if i == 1,
tderiv(1) = (d25(2) - d25(1)) / hx;

elseif i == Nx+I,
tderiv(Nx+l) = (d25(Nx+l) - d25(Nx)) / hx;

else
tderiv(i) = (d25(i+1) - d25(i-1)) / (2 * hx);

end;
end;
u = zeros(Ny+l,Nx+l);
v = zeros(Ny+l,Nx+l);
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for j 1:Nx+1;
for i = 1:Ny+l;

x -j 1) * hx;
y (= 1) * hy;

u(i,j) = ( trap((tderiv~j) .*uderiv(x, y, k, hx)), hx) )
v(i,j) = ( trap((tderiv(j) .*vderiv(x, y, W), hx) )

end
end
v(l,:) = zeros(l,Nx+l);

v(:,1) = zeros(Ny+i,1);

u(:,l) = zeros(Ny+1,1);

xcoul dt / (M * hx-2);
xcon2 -dt / C., * hx);
yconl =dt / (M * hy-2);

ycon2 =dt / (4 * hy);

%A and B are given by:

ci = (xcon2 .* u) -(xconi/ 2);

c2 = 1 + xconl;
c3 = (-xcon2 .*u) -(xconl /2);
c4 = (-ycon2 .*v) + (yconi 2);

c5 = 1 - yconi;

c6 = (ycon2 .* v) + (yconi 2);

% where

* nf n n

%cl T + c2 T + c3 T c4 T + c5 T + c6 T

% x+1,y xSy X-l,y X,y+l xly X'y-1

STo set the boundary condition at the wall:

cl(:,l) = z-eros(Ny+1,1);
c4(:,l) = zeros(Ny+1,1);

c6(:,l) =zeros(Ny+1,1);

% To set the boundary conditions at the far right and bottom:

cl(Ny+l,:) = zeros(l,Nx.1);
c3(Ny+1,:) = zeros(l,Nx+1);
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c3(:,Nx+l) a zeros(Ny+1,1);
c6(Ny+I,:) - zeros(l,Nx+i);

%To set the surface Neumann condition:

c4(1,2:Nx) -yconI * ones(l,Nx-1);

teapa - zeros(Ny+I,Nx+l);

tempa = (c4(1:Ny,:) .* temp(2:Ny+l,:)); zeros(i,Nx+i)] + (c5 .*temp)

+ [zeros(l,Nx+l); (c6(2:Ny+1,:) .* temp(l:Ny,:)));

tempn - reshape(tempa', CNy+1)*(Nx+l), 1);

cia = [ci(:,i:Nx) zeros(Ny+1,i)];
c2a = c2 *ones(Ny+i,Nx+i);
c2a(:,l) c5 * ones(Ny+1,i);
c3a = [zeros(Ny+1,i) c3(:,2:Nx+i)];
cinew =reshape(cla', (Ny+1)*(Nx+i), 1);
c2new = reshape(c2a', (Ny+i)*(Nx+i), 1);

c3new = reshape(c3a', (Ny+1)*(Nx+1), 1);

A = [c3new c2new cinew];
A(1,1) = NaN;
A((Ny+l)*(Nx+i),3) =NaN;

% Use crout (A) to compute the LU factorization of a tridiagonal matrix A.

[lower, upper] = crout(A);

%. Use croutslv(lower, upper, Trhs) to solve L U T* =Tn, where A - L U is
% tridiagonal, Tn is the known temperature, and T* is the step temperature.

tst = zeros(size(A(:,i)));
tst = croutslv(lower, upper, tempn);
tsta = reshape(tst, Nx+1, Ny+I);

tstar = tsta';

% Now we repeat the operation in the other direction (STEP 2).

%. C and D are given by:

dl = (ycon2 .* v) - (yconi / 2);
d2 = 1 + yconi;

73



d3 - (-ycon2 .*v) -(yconl 2);
d4 -(-xcon2 .*u) + (xconl 2);
dS -1 - xconl;

d6 - (xcon2 .* u) + (xconi /2);

% where

fl n+1 n+I n+1
% dl T + d2 T +d3 T -d4T + d5 T + d6 T

X,y+l D x,y - x+1,y xOy X-1,y

% To set the boundary condition at the wall:

dl(1:Ny,l) = zeros(Ny,1);

d3(2:Ny+1,1) a zeros(Ny1l);
d4(:.l) = zeros(Ny+1,1);

% To set the boundary conditions at the far right and bottom:

dl(l:NY,Nx+!.) azeros(Ny, 1).
d3CNy+l,:) = zeros(1,Nx+l);
d3(2:Ny~l,Nx+l) =zeros(Ny1l);
d6(1:NY.Nx+l) -zeros(Ny,l);

% To set the surface Neumann condition:

dl(1,2:Nx+l) = (- yconl) .* ones(1,Nx);

tstarn - zeros(Ny+1,Nx+l);
tstarna [(d4(:,l:Nx) .* tstar(:,2:Nx+l)) zeros(Ny+1,1)] + (d5 . tstar)..

+ [zeros(Ny+1,1) (dC(:,2:Nx+1) .s tstar(:,1:Nx))];
tstaro -reshape(tstarn, (Ny+l)*(Nx+1), 1);

dia - 1d1(l:Ny,:); zeros(l,Nx~l)];

d2a = d2*ones(Ny+l,Nx+l);
d2a(:,l) = d5 * ones(Ny+1,1);
d3a = [zeros(l,Nx+1); d3(2:Ny+l,:)];
dinew -reshape(dla, (Ny+l)*(Nx+l), 1);
d2new - reshape(d2a, (Ny+l)*(Nx+l), 1);
d3new = reshape(d3a, (Ny+l)*(Nx+1), 1);

C = [d3new d2new dinew];
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C(1,1) - NaN;
C((Ny+l)*(Nx+l),3) - NaN;

% Use crout(C) to compute the LU factorization of a tridiagonal matrix C.

[unter, oben] - crout(C);

% Use croutslv(unter, oben, tstarp) to solve L U Tnew = T*, where C = L U is

% tridiagonal, T* is the known temperature, and Tnew is the step temperature.

tplus = zeros(size(C(:,1)));

tplus = croutslv(unter, oben, tstaro);

tnew = reshape(tplus, Ny+l, Nx+I);
n = norm(reshape((tnew - temp), (Ny+l)*(Nx+l), 1));
if n < .0001, break, return;

end;

steps steps + 1;

temp = tnew;

steps
end

return

2. TINIT.M

function out = tinit(hx, hy)

Nx = 4 / hx;

Ny = 3 / hy;

for j = 1:Nx+l;

for i = l:Ny+l;

x = (j - 1) * hx;
y = (i- 1) * hy;

out(i,j) = (l/pi) * atan2((2*x),(x-2 + y'2- 1));
end;

end;

return;
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3. TRAP.M

function out a trap(f, hk)

[M. N] - size(f);
out - (hk / 2) * (f(l) + (2 * sum(f(2:N-1))) + f(N) );

return;

4. UDERIV.M

function out = uderiv(x, y, k, h)

out = (((4*x*y-2) .* k) .J (((x + k).-2) + y-2). 2 -

(2*x .* k) .J ((x + k).-2 + y-2) - (4*x*y-2 .* k) .1

(k. 4 - ((2*x-2) .* k.-2) + x-4 + ((2*y- 2 ) .* k.-2) ...

+ 2*(x*y)-2 + y-4) + ...

log(((x + k).-2 + y-2).-(1/2) .J ((x - k).-2 + y-2).-(1/2))) ./ (2 * pi);

if y == 0,

out(find( isnan(out) I out > 1))

(.5 * log((2*x)+h) + log((2*x)-h) - log(h-2) +

(2 * x2) * (12 * x-2 - 5 * h-2) / ((4 * x-2) - h'2)-2) / (2 * pi);

end;

return;

5. VDERIV.M

function out = vderiv(x, y, k)

out = (-4*x*y .* k.-2 .* (k.-2 - x-2 + y-2)) .J

(3.1415 .* (k.-2 - 2*x .* k + x-2 + y-2) .* (k.-2 + 2*x .* k ...

+ x-2 + y-2).-2);

return;
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6. CROUT.M

function [1, u] - crout(A)

% function [1, u] - crout(A)
%
% This function computes the LU factorization of a tridiagonal matrix A.

% A is input as an Nx3 matrix. For example, if N = 5, the storage is:

%. NaN bl cl bl clb

%.' a2 b2 c2 ! a2 b2 c2

% ' a3 b3 c3 ' represents ! a3 b3 c3

% ! a4 b4 c4 ' a4 b4 c4

% K aS b5 NaN_! aS b5-!

% The variables returned are the Nx2 matrices 1 and u:

% 0 el ! igi! ' el i1 gl

% d22 ! ig2' 'd2 e2 I 1 g2

%h d3 e3 ig3' for! d3 e3 ! , 1 g3

7. d4 e4! I g4' d4 e4 1 g4i

% !-d5 e5_! ! 1 0- ! d5 e5_-! _ 1 _

[N, MJ = size(A);

1 = zeros(N,2);

U =;

u(:,l) = ones(N,i);

I(2:N,l) = A(2:N,1);
1(1,2) = A(1,2);
u(1,2) = A(1,3)/l(f.,2);
for j 2:N-1,

1(j,2) = A(j,2) - A(j,l) * u(j-1,2);

u(j,2) = A(j,3) / 1(j,2);

end

l(N,2) = A(N,2) - A(N,I) * u(N-1,2);

return
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7. CROUTSLV.M

function [x, y] - croutslv(l, u, b)

%. function [x, y] = croutslv(l, u, b)

% This program solves L U x = b, where A L U is tridiagonal, by solving

7. L y = b, and then solving U x - y.

% 1 and u are provided by crout.m

[N, m] = size(1);
y = zeros(N,1);
x=y;
y(1) =b(1) / 1(1,2);

for j = 2:N,
y(j) = (b(j) - l(j,1) * y(j-1)) / l(j,2);

end

x(N) - y(N);

for j = N-1:-1:1,
x(j) = y(j) - u(j,2) * x(j+I);

end
return
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